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NUMERICAL INVESTIGATION OF THE FLUTTER

OF A RECTANGULAR PLATE

UDC 539.3:534.1S. D. Aglazin1 and I. A. Kiiko2

The flutter of a rectangular plate with an arbitrary direction of the velocity vector relative to the plate
side is studied. A numerical no-saturation algorithm is constructed to solve the eigenvalue problem.
Calculation results for the critical flutter velocity and corresponding eigenmodes are given.
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The panel flutter of rectangular plates, as a rule, has been studied in a partial formulation [1] with the flow
velocity vector parallel to one of the plate sides (see also [2]). In papers [3, 4], concerned with the plate flutter
under the action of shearing and normal forces, there is no substantiation of the derivation of the equations used.
In [5, 6], the problem of the panel flutter of shallow shells and plates is considered in general form using the plan
section law) of supersonic aerodynamics and formulations of new problems are given. Conventional methods of
numerical solution of these problems (difference methods, finite-element methods — saturation methods [7]) appear
to be ineffective [8], the accuracy of the Bubnov–Galerkin method in the solution of these problems has not been
studied.

In the present paper, the numerical-analytical no-saturation algorithm [7, 8] developed for the plate flutter
with an arbitrary smooth contour is extended to the case of a rectangular plate with an arbitrarily oriented flow
velocity vector. Calculation results are compared with results obtained using the Bubnov–Galerkin method in an
eight-term approximation.

1. Formulation of the Problem. The problem of the flutter of a rectangular plate occupying a region
K = {(x, y): |x| 6 1, |y| 6 b} reduces to determination of the eigenfunctions of the system [6, 8]:

D∆2ϕ− knv gradϕ = λϕ, ϕ = ϕ(x, y), x, y ∈ K; (1.1)
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Here D = Eh3/(12(1 − µ2)p0a
3) is the dimensionless rigidity of the plate, E and µ are Young’s modulus and

Poisson’s constant of the plate material, h is the thickness, a is half-length in the x direction, k is the polytropic
exponent of the gas, p0 is the undisturbed pressure, v = |V |, V = {v cos θ, v sin θ} is the flow velocity normalized
by the velocity of sound in it, the vector n = {cos θ, sin θ} defines the direction V , and ϕ = ϕ(x, y) is the deflection
amplitude w = ϕ exp (ωt); therefore,

λ = −ρhω2 − kω, (1.5)
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where ρ is the dimensionless density of the plate material normalized by the parameter p0/c
2
0 and the thickness h

is normalized by a. Boundary conditions (1.2) and (1.3) imply that the plate is clamped at its edge and boundary
conditions (1.2) and (1.4) imply free bearing.

The plate oscillations are stable at Reω < 0 and unstable at Reω > 0. In the complex plane λ = α + βi,
the regions of stable and unstable oscillations according to (1.5) are separated by the stability parabola [1] F (α, β)
= k2α− ρhβ2 = 0. Since α = α(v, θ), β = β(v, θ), the equation F (α(v, θ), β(v, θ)) ≡ f(v, θ) = 0 in the plane of the
parameters v and θ defines the neutral curve separating the region of their subcritical values.

The following common properties of the eigenvalues of problem (1.1)–(1.4) are known [1, 8, 9]: 1) Reλ > 0;
2) the oscillations corresponding to the real values of λ are unstable; 3) for fixed θ, the eigenvalues sequentially pass
into the complex region as v increases; for a specified value of v, the number of complex values λ is finite. According
to this, the following scheme of investigation is adopted: (a) a discrete analog is put in correspondence to problem
(1.1)–(1.4); (b) for fixed θ, the critical velocity is determined from the first eigenvalue; (c) with the critical velocity
obtained, a stability analysis is performed for other complex eigenvalues; (d) if a complex value of λ is found outside
the stability parabola, the critical velocity is evaluated from this eigenvalue; (e) the smallest value is chosen from
all the critical velocities thus obtained.

2. Discretization. We shall construct a discrete Laplacian H with boundary condition (1.2) using the
procedure described in [10].

In the plane (x, y), we choose a grid consisting of nodes

xq = cos ((2q − 1)π/(2n)), q = 1, 2, . . . , n; (2.1)

yµ = b cos ((2µ− 1)π/(2m)), µ = 1, 2, . . . ,m. (2.2)

Let A be the matrix of the discrete operator corresponding to the differential operator ∂2ϕ/∂x2 with the
boundary condition ϕ(−1) = ϕ(1) = 0 on grid (2.1) and let B be the matrix of the discrete operator corresponding
to the differential operator ∂2ϕ/∂y2 with the boundary condition ϕ(−b) = ϕ(b) = 0 on grid (2.2). Then, the discrete
Laplacian becomes

H = Im ⊗A+B ⊗ In, (2.3)

where In and Im are unit matrices of size n× n and m×m; the “⊗” sign denotes the Kronecker matrix product.
The eigenvector of the matrix H has the form u = r ⊗ s, where s is the eigenvector of the matrix A and r is the
eigenvector of the matrix B. In this case, the grid nodes are numbered first on x and then on y (from right to
left and from bottom to top). One can state that matrix (2.3) inherits the variable separation property of the
differential Laplacian.

Discretization of the operator ∂2ϕ/∂x2 with the boundary condition ϕ(a) = ϕ(b) = 0 is performed as
follows: (a) on grid (2.1) (a = −1, b = 1) or (2.2) (a = −b, b = b), the interpolation Lagrange formula satisfying
the boundary conditions is written; (b) the second derivatives at the grid nodes are evaluated by differentiating the
interpolation formula. As a result, we have

Dij =
2

b− a
2

k sin2 ψj

k−1∑
q=0

cos (qψj)
[
(2 + q2) cos (qψi) + 3q cosψi + 3q cosψi

sin (qψi)
sinψi

]
,

ψj = (2j − 1)π/(2k), i, j = 1, 2, . . . , k.

Here k = n, a = −1, and b = 1 for the matrix A and k = m, a = −b, and b = b for the matrix B.
Discretization of the derivatives ∂ϕ/∂x and ∂ϕ/∂y is performed similarly. The interpolation Lagrange

polynomial is written on the corresponding grid (2.1) or (2.2), and the values of the derivatives at the grid nodes
are obtained by differentiating this interpolation formula. As a result, we have obtain the differentiation matrix

Dsµ =
4

k(b− a)

k−1∑
q=0

q cos (qψµ) sin (qψs)
sinψs

, ψs =
(2s− 1)π

2k
, s, µ = 1, 2, . . . , k.

For k = n, a = −1, and b = 1, we obtain the matrix Dx of differentiation with respect to x; for k = m,
a = −b, and b = b, we have the matrix Dy of differentiation with respect to y. To obtain the derivatives of the
function ϕ at the grid nodes, it is necessary to multiply the matrix D by the vector of the values of the function ϕ
at the grid nodes. A consequence of boundary conditions (1.2) and (1.4) is the condition

∆ϕ
∣∣∣
∂K

= 0. (2.4)
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In this case, the matrix of the biharmonic operator with boundary conditions (1.2) and (2.4) is H2 because
the matrix H2 has the same eigenvectors as the matrix H and the eigenvalues λ2

i , i = 1, 2, . . . , N [λi are the
eigenvalues of the matrix H of size N ×N (N = mn)].

Let us consider discretization of Eq. (1.1) with boundary conditions (1.2) and (1.3), i.e., a plate clamped
along the contour.

For the function ϕ = ϕ(x, y) in the rectangle, we write the interpolation formula

ϕ(x, y) =
n∑
j=1

m∑
i=1

Mi0(z)Lj0(x)ϕ(xj , yi), y = bz, z ∈ [−1, 1], x ∈ [−1, 1], (2.5)

where

Lj0(x) = l(x)/(l′(xj)(x− xj)), l(x) = (x2 − 1)2Tn(x), Tn(x) = cosn arccosx,

xj = cosϑj , ϑj = (2j − 1)π/(2n), j = 1, 2, . . . , n,

Mi0(z) = M(z)/(M ′(zi)(z − zi)), M(z) = (z2 − 1)2Tm(z),

zi = cosϑi, ϑi = (2i− 1)π/(2m), i = 1, 2, . . . ,m.

The interpolation formula (2.5) satisfies the clamped boundary conditions. To obtain the matrix of the
discrete biharmonic operator H, it is necessary to apply the biharmonic operator to the interpolation formula (2.5);
it is necessary to differentiate formula (2.5) with respect to x and y four times. As a result, we obtain an asymmetric
matrix H of size N ×N (N = mn). Let us number the nodes in the rectangle (xj , yi) first along y and then along x,
i.e., from top to bottom and from right to left. As a result, the expression ∆2ϕ is approximated by the expression
Hϕ [ϕ is the vector of the values of the function ϕ = ϕ(x, y) at the grid nodes]. We note that the matrix H is
asymmetric although the biharmonic operator considered is self-conjugate. Consequently, the matrix H can have
complex eigenvalues. In stability problems, the presence of complex eigenvalues (due to discretization errors) for
the discrete biharmonic operator is undesirable. Therefore, the approach used should be modified. Instead of
the matrix H, we considered the matrix (H + H∗)/2. This approach can be explained as follows. The original
problem is self-conjugate (biharmonic equation with a clamped boundary condition) but discretization results in an
asymmetric matrix H. Let us write H as

H = (H +H∗)/2 + (H −H∗)/2

and consider the asymmetric part as the discretization error. The perturbation thus introduced into the eigenvalues
of the matrix H depends on how far the resolvents of the matrices H and (H +H∗)/2 are close in the part of the
complex plane of interest for the flow stability analysis. This perturbation can be estimated theoretically using the
scheme described in [11]. Results of numerical evaluation of this perturbation are given below.

For b = 1, a matrix H of size 361×361 (361 = 19×19) has the first eigenvalue
√
λ1/π

2 = 2.4902. This value
was compared with the one obtained in calculations [12]

√
λ∗1/π

2 = 2.489. The matrix (H+H∗)/2 has an eigenvalue√
λ′1/π

2 = 2.3961. Thus, the perturbation introduced into the eigenvalues of the matrix H by symmetrization is
acceptable.

Discretization of gradϕ in the boundary-value problem (1.1)–(1.3) was performed similarly.
3. Results of Numerical Calculations. We consider calculation results for a simply supported plate

using the following values of mechanical parameters: p0 = 1.0126 · 105 Pa, ρ0 = 1.2928 kg/m3, µ = 0.33, k = 1.4,
E = 6.86 · 1010 Pa, and ρ = 2.7 · 103 kg/m3. The relative size b, thickness h, flow rate v, and angle θ were varied.

Test calculations were performed for a square plate (b = 1, h = 0.003). The following results were obtained:
vcr(0) = vcr(π/2) = 0.2103 and vcr(π/4) = 0.2001; in all cases, vcr was determined from the first eigenvalue. Curves
of Reϕ(x, 0) and Reϕ(0, y) coincide.

Calculations results for a plate with dimensions b = 0.5 and h = 0.003 are given in Table 1 (the eigenvalue
number is given in parentheses). We note the following circumstance, which can be important in numerical analysis
of the flutter problem: the values |λ1| = 1.56658 and |λ2| = 1.56660 (θ = 0) are close, but λ1 > 0 is real and does
not generate unstable oscillation modes. Values of v∗cr obtained by the Bubnov–Galerkin method in an eight-term
approximation are given in the third column of Table 1. From Table 1, it follows that this method gives understated
results.
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TABLE 1

θ vcr v∗cr

0 0.3546 (1) 0.3042
π/8 0.3737 (1) 0.3307
π/4 0.4346 (1) —

5π/16 0.4801 (1) 0.4207
3π/8 0.5235 (1) —

15π/32 0.5275 (2) 0.4022
π/2 0.5257 (2) 0.4121

bà

c

Fig. 1

The calculation results given in Table 1 lead to the following conclusions: a) the critical velocity increases
abruptly in the angle range θ ∈ (π/4, 3π/8) and varies smoothly for other values of the angles; b) the maximum
of the critical flutter velocity is near the point θ = 15π/32 (so-called stabilization effect of plate oscillations with
respect to fluctuations in the velocity vector direction in the neighborhood of θ = π/2). We note that in [13], this
effect was detected when solving the strip flutter problem. Figure 1a–c shows the real parts of the eigenfunctions
for θ = π/4, 5π/16, and 3π/8 and v = vcr = 0.4346, 0.4801, and 0.5235, respectively

Calculations were performed for an elongated plate with dimensions b = 0.25 and h = 0.0015 (ratio of the
thickness to the smaller side of the plate is the same as in the previous calculation). The calculation results are
given in Table 2. Figure 2a–e shows the real parts of the eigenfunction for θ = 0, π/4, 5π/16, 3π/8, and 7π/16 and
v = vcr = 0.2655, 0.3541, 0.4014, 0.4803, and 0.4912, respectively. It is evident that for the values of θ for which
the critical velocity increases most sharply, the oscillation mode changes. Consequently, for these values of θ, the
plate is most sensitive to variations in the flow velocity and direction.
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Fig. 2
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TABLE 2

θ vcr θ vcr

0 0.2655 (3) 3π/8 0.4803 (1)
π/8 0.2832 (3) 7π/16 0.4912 (2)
π/4 0.3453 (1) 15π/32 0.4867 (3)

5π/16 0.4014 (1) π/2 0.4851 (4)

TABLE 3

h
vcr

Data [14] Grid 9× 9 Grid 19× 19

5.0000 · 10−3 1.0000 1.0615 (1) 1.0615 (1)
6.3091 · 10−3 2.0029 2.0991 (1) 2.0991 (1)
7.2202 · 10−3 3.0029 3.1325 (1) 3.1324 (1)
7.9365 · 10−3 4.0029 4.1523 (1) 4.1523 (1)
8.5470 · 10−3 5.0059 5.1806 (1) 5.1805 (1)
9.0909 · 10−3 6.0059 6.2296 (1) 6.2295 (1)
9.5694 · 10−3 7.0059 7.2627 (1) 7.2626 (1)
1.0000 · 10−2 8.0088 8.2853 (1) 8.2851 (1)
1.0417 · 10−2 9.0088 9.3632 (1) 9.3630 (1)

4. Bubnov–Galerkin Method. It is assumed that in the rectangular plate flutter problem (in the
traditional formulation V = {vx, 0}) the Bubnov–Galerkin method gives a reasonable value of the critical velocity
even in the two-term approximation. However, in [2], it is noted that in the case of a streamwise elongated plate, the
effectiveness of the method decreases sharply and to reach reasonable accuracy, it is necessary to retain a considerable
(generally speaking, unknown beforehand) number of terms in the approximating sum. The applicability of the
Bubnov–Galerkin method to plate flutter problems in a general formulation has been studied insufficiently. The
results given below fill in this gap to some extent.

From Figs. 1 and 2, it follows that the characteristic dimension of the perturbation is on the order of half the
smaller side of the plate; therefore, an approximate solution was sought in the form ϕ = cmn sin (mπy) sin (nβπx),
m = 1, 2; n = 1, . . . , 4 (the plate occupies the regionK = {(x, y): 0 6 x 6 1/β, 0 6 y 6 1}). The standard procedure
of the Bubnov–Galerkin method for solving Eqs. (1.1) reduces to examination of the roots of the characteristic
determinant of the eighth order, which is not written here because of its cumbersome form. It is necessary to
determine the dependence λ = λ(v, θ). An analysis of the results allows the following conclusions to be drawn:
(a) the Bubnov–Galerkin method gives satisfactory estimated values of v∗cr if the number of terms in the formula
for ϕ is not less than N ∼ 4a/b (two “half-waves” along the smaller side and 2a/b “half-waves” along the larger
side); (b) in the determination of the dependence λ = λ(v, θ), and consequently, the oscillation modes, the Bubnov–
Galerkin method gives an error that increases with increasing flow velocity and leads to deterioration of qualitative
results. These conclusions are not final; investigation for plates of different geometries and different combinations
of boundary conditions is required.

5. Comparison with the Results of [14]. In [14], the critical flutter velocity for a simply supported
square plate were calculated in a partial formulation with the flow velocity vector directed parallel to the plate
side. In the paper cited, the occurrence of a complex eigenvalue in the spectral problem was examined. In [14],
the velocity increment at which the eigenvalue enters a stability parabola was not determined. Below, the results
of calculation using the procedure described are given and compared with the results of [14]. The calculations
were performed for the following parameter values: p0 = 1.0126 · 105 Pa, ρ0 = 1.2283 kg/m3, µ = 0.3, k = 1.4,
E = 1.9982 ·1011 Pa, and ρ = 7.8 ·103 kg/m3. The plate thickness was varied. The calculation results are presented
in Table 3. The relative thicknesses of a square plate (b = 1) are given in the first column. The values of vcr

obtained in [14] are given in the second column. The third and fourth columns give values of vcr calculated using
the procedure of Sec. 2, on 9×9 and 19×19 grids, respectively. The eigenvalue number used for stability calculation
is given in parentheses. From Table 3, it follows that the results are in good agreement. The largest relative error
of 3.8% takes place for h = 1.0417 · 10−2.
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6. Conclusions. The error of the numerical method described here can be estimated by a standard
method. We only note the property of the discretization used. In the present study, the solution was interpolated
using Lagrange interpolation polynomials. It is known that this the approximation of the function by the polynomial
is the better the larger the number of smoothness conditions to which the function satisfies [15]. It is also known
that elliptical equations have solutions of high smoothness (for a rectangle, this is valid inside the region rather than
in the corners on the boundary). The calculations performed confirm the high quality of the algorithm. Even on a
grid of 9× 9 = 81 at a/b = 0.5, the critical velocity is accurate to four decimal places, as follows from comparison
with calculations on a grid of 19× 19 = 361. The critical velocity can be determined more accurately (the root of
the corresponding transcendental equation was accurate to ε = 10−4) but in practice this is not required.
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